

Case Study in Automation Design Practices:

Analysis of Human-Computer Interaction in Response to FMS Error Messages

Lance Sherry (SJSU)
Michael Feary (NASA)
Karl Fennell (UAL)
Peter Polson (U. Colorado)

NASA Human Factors Symposium 10/04

Acknowledgements

- NASA Human Automation Design Methods and Tools (HADMAT) Project Element of Airspace Systems
- Rose Ashford (Level 3 Program Manager)
- Michael Feary (NASA TPC)
- Kevin Jordan (SJSU Foundation)
- Immanuel Barshi (NASA)
- Kevin O'Neill (SWA)
- Randy Mumaw/Dan Boorman (Boeing)

Background of R&D

- Traditional design practices fail to match "impedance" between automation & operation (Billings, 1997)
 - HCl of modern systems is left to chance
- Goal of R&D to introduce HCl practices into mainstream engineering processes conducted by software/system engineers
 - HCI <u>not</u> inspected in by HF expert
- Process Interventions:
 - Task Design Document (TDD)
 - Specification of HCl for all tasks
 - Signed-off by Program Manager
 - Identify and Train 1st principles to engineers
 - Abstracted/simplified models
 - 1st principles, not checklists
 - HC Interaction (not properties of GUI)

Background of R&D

Case Study in Design Practices Case Study in Design Practices

Automation

- Flight Management System (FMS)
- Functions to support approx 101 airline mission tasks:
 - ATC instructions (navigation)
 - Checklist items
 - SOP's (flows) (progress, optimization)
- FMS Error Messages
 - 67 messages
 - Invalid entry
 - System failure
 - Sensor failure
 - Fail reasonableness check
 - Configuration mismatch

Background of Case Study

- Operational Experience
 - Despite benefits, the MCDU/FMS is hard to learn and difficult to use
 - Mumaw, et. al. 2000; BASI, 1999; Air Transport Association 1997, 1998, 1999; Feary et.al. 1998; FAA Human Factors Team 1996
 - Difficulties using the FMS have been attributed to:
 - awkward layout of the MCDU keyboard (Sarter & Woods, 1994)
 - excessive number of pages and features (Billings, 1997)
 - inefficiencies in inputting data (Abbott, 1997)
 - over-reliance on memorized action sequences (Sherry et. al. 2001, 2004)
 - Difficulties using FMS due to absence of feedback (Mumaw, 2000)
 - Aircraft/System state (Wiener's 3 questions)
 - Anomalies (Error messages, Cautions, Warnings) (Boorman, 2001)
 - Responding to FMS scratchpad error messages is a specific problem
 - Jump seat observation of revenue service operations
 - · observations of airline training
 - Appearance of message results in question
 - "what does this mean?"
 - "what do we do about it?"

Background of Case Study

- Costs of Learning FMS
 - Airline pilots invest significant personal <u>time</u>, <u>effort</u>, and <u>energy</u> into developing skills to become proficient using FMS
 - Need to pass Proficiency Checks, Line Checks
 - 35 50 hours of their own time (Polson, Irving, Irving)
 - Airlines invest significant <u>resources</u> into training
 - developing skills to proficiency in pilots
 - 3-5 weeks transition/new hire
 - 3 days + sim time for FMS

Case Study in Design Practice

Design Process

- Quality, safety ensured by regulations
 - FARs lead to TSO and STC
 - Not based on 1st principles
 - Lessons learned from accidents/incidents
 - Absent on usability and training (time/cost) issues
 - Address workload at very high level
 - Engineering Process (DO-178B) lead to Software Certfication
 - · Best practices
 - Emphasis documentation, traceability, review/testing
 - "System is certified when paperwork exceeds Takeoff Gross Weight of Aircraft"
- FARs not integrated into process
- Software certification (and therefore Design Engineers) evaluated on process only
- Many HCI design issues solved by software engineers
- Need 1st principles to make sure FARs/Issues accounted for by software engineers in the process

Background of Case Study

- For scratchpad error messages:
 - Why were these issues not addressed during the "DO 178B-like" design process?
 - What can we do about this?
- Traditional HF not working in the "DO 178B-like" design process
 - 1. Many GUI design decisions made by software engineers deep in the process
 - 2. Spiral design and Change Request processes constantly spawn changes
 - 3. One small change has large HCI implications
 - 4. HF inspections are too little, too late
 - 5. Checklists for GUI properties do <u>not</u> address HCI interaction (i.e. formulation of Tasks)
- Need 1st principles that software engineers can apply

Organization of Presentation

- 1. Method of HCI Analysis
 - How engineer can look at HCI
- 2. Results & 1st Principles of Design
 - What existing systems look like
- 3. Design Interventions
 - What to do about it
- 4. Conclusion

- Use B777 FMS as representative sample
 - 67 error messages
- 4 Part Analysis
 - Estimate Frequency of Event that Prompts Message
 - 2. Estimate **Severity** of Event that Prompts Message
 - 3. Define **HCI** in Response to Event/Message
 - Classify Type of Cognition for Response (See/Remember)

1. Estimate Frequency of occurrence of each Event/Message

- Very Infrequent
 - occurs once in every 101+ flights
- Infrequent
 - occurs once in every 21 100 flights
- Occasional
 - occurs once in every 5 20 flights
- All
 - occurs once in every 1-4 flights

Step 2) Estimate Severity of each Event/Message

- Severe
 - flight cannot continue
 - requires immediate attention
- Major
 - Long-term flight outcome in jeopardy
 - requires immediate attention/except for other critical tasks
- Minor
 - no impact
 - address time permits

3. <u>Define **HCI** in response to message</u>

- 5 stage model of Human-Computer Interaction
 - 1. Identify **F**unction/Data
 - 2. Access Page
 - **3.** Enter Data (format, range, ...etc)
 - 4. Confirm & Execute
 - **5.** <u>M</u>onitor

3) Define **HCI** in response to message

- Identify step in F-A-E-C-M in which message occurs
 - Message occurs following pilot Entry stage
 - Message may have context, less ambiguous
 - Message occurs during Monitor stage
 - Message has no context/ambiguous
- Identify steps in F-A-E-C-M model in response to message
 - Message triggers pilot to start a new Task (1)
 - Message triggers pilot to re-Reformulate current Task (1)
 - Message triggers pilot to re-Enter for current Task (3)
 - Message triggers pilot to pilot to Monitor current Task (5)

- 4) Classify **Type of Cognition** for Response (See/Remember)
 - See/Remember Analysis
 - See response occurs when Message provides pilot with visual cues to guide next actions
 - Remember response occurs when Message requires pilot to remember next actions
 - Study limited to initial response to message (not whole action sequence)
 - See/Remember is design heuristic for practicing software engineers
 - Not adequate theoretical explanation for underlying pilot cognition
 - Designed explicitly as 1st principle for software engineers

Results

- B777 representative FMS
- 67 messages analyzed (FMS Pilots Guide)
 - Result in 70 tasks
- Team
 - Airline pilot instructor (16 years)
 - Senior Cognitive Scientist (40 years)
 - Human Factors Researcher with Multi-engine rating (10 years)
 - Avionics designer (20 years)
- Analysis to criteria
- Consensus required

Results (1) – Frequency

- 54% Very Infrequent (< 100 flights)
 - CHECK AIRLINE POLICY
- 16% Infrequent (20 100 flights)
 - GPS/INERTIAL NAV ONLY
- 28% Occasional (5 20 flights)
 - RESET MCP ALT
- <1% All the time</p>
 - TAKEOFF SPEEDS DELETED

Design Implications:

Very low frequency leads to forgetting correct interpretations and actions

Results (2) - Severity

- Severe (< 1%) flight cannot proceed
 - FUEL DISAGREE PROG 2/2
- Major (60%) attend immediately
 - INSUFFICIENT FUEL
 Minor (40%) attend time permitting
 - CRS REVERSAL AT FA FIX

Design Implications:

Severity demands rapid, reliable response (no time for reflection)

Results (1&2) - Frequency * Severity

Frequency Event	Very Infrequent	Infrequent	Occasional	All	
Severity					
Severe	2	1	-	-	
Major	24	9	5	1	
Minor	9	1	13	-	

- 38% Severe/Major AND Very Infrequent
 - VERIFY POSITION
 - THRUST REQUIRED
 - RW/ILS CRS ERROR

Design Implications:

•Humans respond poorly to unexpected events in time critical environments

Results (3) – Response to Message

- Message occurs while:
 - Entering data (40%)
 - NOT IN DATABASE
 - ROUTE FULL
 - ILS TUNE INHIBITTED MCP
 - Monitoring (60%)
 - INSUFFICIENT FUEL
 - RWY/ILS FREQ ERROR
 - THRUST REQUIRED

Design Implications:

Entry: Context of message leads to ease in response

Monitoring: Ambiguity in_context causes difficulty in response

Results (3) – Response to Message San José State

- Message results in:
 - New Task (69%)
 - INSUFFICIENT FUEL
 - RESET MCP ALT
 - RWY/ILS CRS ERROR
 - Re-Reformulate (21%)
 - MAX ALT XXX
 - Re-enter (6%)
 - INVALID ENTRY
 - Monitor (2%)
 - ROUTE X UPLINK LOADING

Design Implications:

 Messages create new tasks (not just feedback on last action)

24

Results (4) – See/Remember

- 57% messages Pilot must Remember next F-A-E-C-M action
 - CHECK AIRLINE POLICY
 - Remember this means Call Maintenance
 - FUEL DISAGREE PROG 2/2
 - Remember this means do Fuel Checklist
 - INSUFFICIENT FUEL
 - Remember this could be the result of several factors: WINDS, LEGS, ROUTE
 - Remember the underlying model used by FMS to compute Fuel at Destination
- 43% messages Pilot can See next F-A-E-C-M action
 - RESET MCP ALT
 - CHECK ALT TGT
 - DRAG REQUIRED

Design Implications:

- See is more reliable than Remember
- See less workload than Remember
- See is faster to learn than Remember
- See ensures competence longer than Remember

Results (4) – See/Remember

- Two "styles" of message
 - Information message (59/67)
 - Identify situation/context
 - No guidance for response (Pilot must See or Remember)
 - 23 following Enter some context
 - INERTIAL/ORGIN DISAGREE
 - LIMIT ALT XXXX
 - 36 during Monitor
 - END OF ROUTE
 - INSUFFICIENT FUEL
 - Task message (9/67)
 - Identify task
 - 2 following Enter
 - ENTER INERTIAL POSITION
 - 7 during Monitor
 - NAV INVALID TUNE XXX

Design Implications:

- Task message requires Reformulation only
- Information message requires Comprehension, then Reformulation

- First Principles for HCI Design by Software Engineers
 - Frequent tasks
 - Pilots will Remember action sequences due to frequent use independent of presence of visual cues
 - Pilots will learn faster with visual cues (See)
 - Infrequent tasks
 - Pilots will only remember action sequences with visual cues (See)
 - Pilots will learn faster with visual cues (See)
 - Tasks composed of F-A-E-C-M stages
 - Pilot action (cognitive or physical) must be <u>designed</u> for each stage

- Task Design Document (TDD)
 - Part of DO-178B and DO-278 software design process
- TDD includes:
 - List of airline mission tasks
 - Frequency of tasks
 - Severity of tasks
 - F-A-E-C-M steps for each task
 - See/Remember for each step
- Program Manager signs-off on TDD
 - May need waiver for too many Remember steps

- Message characteristics:
 - Infrequent occurrence
 - Pilots will not be exposed to build competence through repetition
 - Severe/Major consequences
 - Pilots will have to respond rapidly, reliably
- Desired Message properties:
 - Provide visual cues for F-A-E-C-M action sequence

- Components of message:
 - 1. Situation/Context description
 - 2. Task description
 - 3. Next action guidance
 - <Situation> <Task>, <Next Action>
- Contents of description
 - Use terms of MCDU/FMS
 - INSUFFICIENT FUEL → UFOB AT DEST < RESERVES
 - Page titles
 - Field labels

Current Message
INSUFFICIENT FUEL

Proposed Message
UFOB AT DEST <
RESERVES – CHECK
WINDS/LEGS/RTE

INERTIAL/ORIGIN DISAGREE

INERTIAL/ORIGIN POS DISAGREE – RE-ENTER ORIGIN, START RE-ALIGNMENT

INIR

MENU

CRZ

HOLD

Design of Interventions

On-demand Look-up/Training

M	OD RTE L	EGS 1/2		LOOK UP – UFOB < RESERVES			LOOK UP – UFOB < RESERVES	
FFU		293/FL210		CHECK WINDS			CHECK WINDS	
170° LODUY	49NM	.782/FL343	, □	CHECK LEGS		, 	ACCESS LEGS	
173° URNUW	20NM	.782/FL370	┙	CHECK ROUTE		'\ '\	ENTER WND	
209°	63NM		\neg / \Box	CHECKROOTE		V 🗆	WILD	
MLF 190°	119NM	.782/FL370						
KSINO RNP/ACT	UAL	280/FL188						
1.00/0.05N	_	187						
UFOB < R	ESERVES)

Conclusions

- Design of messages <u>cannot</u> be left to chance
- Cognition required to perform each task must be analyzed
 - 1st principles: F-A-E-C-M & See/Remember
- Same issues apply to graphical user interfaces
- Task Design Document (TDD)
 - part of approved certification design process (DO-178B)
- NASA toolset/analysis available (Feary and others)
- Future Work:
 - FAA Certification (DO-178B, 278B)
 - Aircraft Manufacturers/Avionics Designers
 - Transfer technology to Healthcare, transportation
 - Airline training, Airline training equipment manufacturers